17 research outputs found

    Architecture of Environmental Risk Modelling: for a faster and more robust response to natural disasters

    Full text link
    Demands on the disaster response capacity of the European Union are likely to increase, as the impacts of disasters continue to grow both in size and frequency. This has resulted in intensive research on issues concerning spatially-explicit information and modelling and their multiple sources of uncertainty. Geospatial support is one of the forms of assistance frequently required by emergency response centres along with hazard forecast and event management assessment. Robust modelling of natural hazards requires dynamic simulations under an array of multiple inputs from different sources. Uncertainty is associated with meteorological forecast and calibration of the model parameters. Software uncertainty also derives from the data transformation models (D-TM) needed for predicting hazard behaviour and its consequences. On the other hand, social contributions have recently been recognized as valuable in raw-data collection and mapping efforts traditionally dominated by professional organizations. Here an architecture overview is proposed for adaptive and robust modelling of natural hazards, following the Semantic Array Programming paradigm to also include the distributed array of social contributors called Citizen Sensor in a semantically-enhanced strategy for D-TM modelling. The modelling architecture proposes a multicriteria approach for assessing the array of potential impacts with qualitative rapid assessment methods based on a Partial Open Loop Feedback Control (POLFC) schema and complementing more traditional and accurate a-posteriori assessment. We discuss the computational aspect of environmental risk modelling using array-based parallel paradigms on High Performance Computing (HPC) platforms, in order for the implications of urgency to be introduced into the systems (Urgent-HPC).Comment: 12 pages, 1 figure, 1 text box, presented at the 3rd Conference of Computational Interdisciplinary Sciences (CCIS 2014), Asuncion, Paragua

    Stability of Atmospheric Flow and Low-Level Jets Influencing Forest Fire Behaviour - An EFFIS Report

    Get PDF
    During the past years, there have been a considerable number of occasions that a forest fire burns with such strong intensity that seems far out of proportion to apparent burning conditions. This proved to be the case for the Sweden fire “blow-up” that took place during 4 August 2014 between Sala and Surahammar municipalities. The fire broke out after an unusual spell of hot, dry summer weather in northern Europe and proved to be the Sweden's largest wildfire in 40 years encompassing an area of ~15,000 hectares. The fire was declared a national emergency. Close investigation of fire weather parameters revealed the existence of an upper-air trough linked to a dissolving warm front on the previous day (3 August) providing low stability values over the fire centroid and the approach of a cold front from southwest further lowering the stability of the atmosphere. But above all, the air dryness and the prevailing of strong surface wind gusts due to a Secondary Low-Level Jet (SLLJ) at 950 hPa accompanied by a short-wave trough most pronounced at 700 hPa (the level of the main LLJ’s kernel of max winds) made ideal conditions for such an extreme event. In such a case, the left entrance area of SLLJ would have allowed an ageostrophic circulation to feed dry air the fire by a direct downward current during the critical hours of 4 August. The time that the SLLJ was crossing and intensifying over and to the east of fire centroid found to be in agreement with the position and movement of the area of maximum instability as defined by the very high (and at times “saturated”) values of Haines Index (HI) being combined with almost “saturated” Fire Weather Index (FWI) values. The HI gives an indication about the potential for a fire "blow­-up” due to low stability values of the atmosphere whereas FWI provides a description of the fire suppression difficulty. It should be noted that a fire blow-­up would lead to erratic/extreme fire behavior. Most of the initial simulations utilising ECMWF instantaneous wind speed values, as driving terms for EFFIS (European Forest Fires Information System) fire evolution models, namely FireSim and FARSITE, were inaccurate due to errors in the intensity and gustiness of true prevailing winds. By introducing model gust factor values (GFs) instead of instantaneous wind speeds (WSs) significant improvement in accuracy was accomplished in all fire evolution simulations. In such distinct unstable environment and under the presence and influence of both LLJ and SLLJ the utilization of model gust factors instead of instantaneous winds found to be more appropriate for simulating fire evolution behavior. Overall, it seems quite important to consider the concept of atmospheric stability, dryness and the presence of LLJs/SLLJs as key elements in the forest fire management system particularly in circumstances conducive to interactions within the PBL (Planetary Boundary Layer).JRC.H.3-Forest Resources and Climat

    Free and open source software underpinning the european forest data centre

    Get PDF
    Excerpt: Worldwide, governments are growingly focusing on free and open source software (FOSS) as a move toward transparency and the freedom to run, copy, study, change and improve the software. The European Commission (EC) is also supporting the development of FOSS [...]. In addition to the financial savings, FOSS contributes to scientific knowledge freedom in computational science (CS) and is increasingly rewarded in the science-policy interface within the emerging paradigm of open science. Since complex computational science applications may be affected by software uncertainty, FOSS may help to mitigate part of the impact of software errors by CS community- driven open review, correction and evolution of scientific code. The continental scale of EC science-based policy support implies wide networks of scientific collaboration. Thematic information systems also may benefit from this approach within reproducible integrated modelling. This is supported by the EC strategy on FOSS: "for the development of new information systems, where deployment is foreseen by parties outside of the EC infrastructure, [F]OSS will be the preferred choice and in any case used whenever possible". The aim of this contribution is to highlight how a continental scale information system may exploit and integrate FOSS technologies within the transdisciplinary research underpinning such a complex system. A European example is discussed where FOSS innervates both the structure of the information system itself and the inherent transdisciplinary research for modelling the data and information which constitute the system content. [...

    Forest Fires in Europe Middle East and North Africa 2013

    Get PDF
    This is the 14th “Forest Fires in Europe” report published by the European Commission. The report contains a summary of the 2013 fire season in Europe, the Middle East and North Africa with official statistics on the number of fires and burnt areas compiled by the contributing countries. In addition to country reports with a summary of the past fire season provided by the countries, the report Forest Fires in Europe, Middle East and North Africa informs about the latest developments in terms of forest fire prevention and initiatives of the European Commission to support forest fires fire protection activities in the European Union. Furthermore it provides the results of the European Forest Fire Information System (EFFIS) operating during the fire season, with special emphasis on the EFFIS Danger Forecast, providing daily maps of meteorological fire danger forecast of EU, and the EFFIS Rapid Damage Assessment, performing the daily mapping and assessment of main land cover and Natura2000 areas affected by fires of at least 40 ha during the fire season.JRC.H.3-Forest Resources and Climat

    Towards a Map of the European Tree Cover based on Sentinel-2

    Get PDF
    Many areas of science and policy depend on knowledge of the tree cover in Europe. Sentinel-2 is a new (launched in 2015) satellite with a higher spatial resolution compared to previous satellites. In the present study a new algorithm for mapping tree cover from Sentinel-2 is developed, an analysis of which bands should be used for tree cover mapping is made, the accuracy of the mapping is assessed, and the tree cover from the present approach is compared with previous estimates. Firstly, the feasibility of the present algorithm is demonstrated. Secondly, it is shown that only ten band combinations have good performance in four selected Sentinel-2 tiles and that the bands 3, 5, 6, 12 appear in most combinations. Thirdly, the accuracy is assessed to be high, and lastly it is shown that the relative difference between the tree cover of the present study and the tree cover of previous studies is between -14% and 68

    Free and open source software underpinning the european forest data centre

    Get PDF
    Excerpt: Worldwide, governments are growingly focusing on free and open source software (FOSS) as a move toward transparency and the freedom to run, copy, study, change and improve the software. The European Commission (EC) is also supporting the development of FOSS [...]. In addition to the financial savings, FOSS contributes to scientific knowledge freedom in computational science (CS) and is increasingly rewarded in the science-policy interface within the emerging paradigm of open science. Since complex computational science applications may be affected by software uncertainty, FOSS may help to mitigate part of the impact of software errors by CS community- driven open review, correction and evolution of scientific code. The continental scale of EC science-based policy support implies wide networks of scientific collaboration. Thematic information systems also may benefit from this approach within reproducible integrated modelling. This is supported by the EC strategy on FOSS: "for the development of new information systems, where deployment is foreseen by parties outside of the EC infrastructure, [F]OSS will be the preferred choice and in any case used whenever possible". The aim of this contribution is to highlight how a continental scale information system may exploit and integrate FOSS technologies within the transdisciplinary research underpinning such a complex system. A European example is discussed where FOSS innervates both the structure of the information system itself and the inherent transdisciplinary research for modelling the data and information which constitute the system content. [...

    Sentinel-2 web platform for REDD+ monitoring. Online web platform for browsing and processing Sentinel-2 data for forest cover monitoring over the Tropics

    Get PDF
    The recent availability of time series of Sentinel-2 imagery represents a significant technological step in the use of Earth Observation (EO) data for forest cover monitoring. The 5 days revisiting time (S-2 A and S-2B satellites) and the 10m spatial resolution imply the need for much larger storage and processing resources than ever. To facilitate the use of Sentinel-2 imagery by national forestry services in the tropics (in particular in relation to REDD+ activities), the JRC has developed the Sentinel-2 web platform, an online Web system which is aimed at browsing, exploring and processing the full dataset of Sentinel-2 imagery available over theTropical belt.JRC.D.1-Bio-econom

    Free and open source software underpinning the european forest data centre

    Get PDF
    Excerpt: Worldwide, governments are growingly focusing on free and open source software (FOSS) as a move toward transparency and the freedom to run, copy, study, change and improve the software. The European Commission (EC) is also supporting the development of FOSS [...]. In addition to the financial savings, FOSS contributes to scientific knowledge freedom in computational science (CS) and is increasingly rewarded in the science-policy interface within the emerging paradigm of open science. Since complex computational science applications may be affected by software uncertainty, FOSS may help to mitigate part of the impact of software errors by CS community- driven open review, correction and evolution of scientific code. The continental scale of EC science-based policy support implies wide networks of scientific collaboration. Thematic information systems also may benefit from this approach within reproducible integrated modelling. This is supported by the EC strategy on FOSS: "for the development of new information systems, where deployment is foreseen by parties outside of the EC infrastructure, [F]OSS will be the preferred choice and in any case used whenever possible". The aim of this contribution is to highlight how a continental scale information system may exploit and integrate FOSS technologies within the transdisciplinary research underpinning such a complex system. A European example is discussed where FOSS innervates both the structure of the information system itself and the inherent transdisciplinary research for modelling the data and information which constitute the system content. [...

    An Architecture for Adaptive Robust Modelling of Wildfire Behaviour under Deep Uncertainty

    No full text
    Part 4: Environmental Applications in Risk and Crises ManagementInternational audienceWildfires in Europe – especially in the Mediterranean region – are one of the major treats at landscape scale. While their immediate impact ranges from endangering human life to the destruction of economic assets, other damages exceed the spatio-temporal scale of a fire event. Wildfires involving forest resources are associated with intense carbon emissions and alteration of surrounding ecosystems. The induced land cover degradation has also a potential role in exacerbating soil erosion and shallow landslides. A component of the complexity in assessing fire impacts resides in the difference between uncontrolled wildfires and those for which a control strategy is applied. Robust modelling of wildfire behaviour requires dynamic simulations under an array of multiple fuel models, meteorological disturbances and control strategies for mitigating fire damages. Uncertainty is associated to meteorological forecast and fuel model estimation. Software uncertainty also derives from the data-transformation models needed for predicting the wildfire behaviour and its consequences. The complex and dynamic interactions of these factors define a context of deep uncertainty. Here an architecture for adaptive and robust modelling of wildfire behaviour is proposed, following the semantic array programming paradigm. The mathematical conceptualisation focuses on the dynamic exploitation of updated meteorological information and the design flexibility in adapting to the heterogeneous European conditions. Also, the modelling architecture proposes a multi-criteria approach for assessing the potential impact with qualitative rapid assessment methods and more accurate a-posteriori assessment
    corecore